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Weihrauch lattice

Weihrauch reduction: Let f,g:C NNV — NV
f<wg iff 3K,H:CNN = N computable (f = H(id, gK))

— g

Strong variant:

f<wyg iff 3K H:CNY - N computable (f = Hgk)

R [




Mutlivalued functions

Let f,g:C NN = NN be multivalued.

Definition
F:C NN — NN realizes f iff

F(z) € f(x) for all x € dom(f).

Write F I- f.

f<wgif
IK, HYG + g (H{id, GK) b f).

Same for <qw.



Represented Spaces

Spaces X, Y are represented by surjective function dx,dy :C NY — X, V.
A realizer F:C NN — NN to a multivalued function on represented spaces
f:C(X,0x) = (Y, dy) is function such that the following diagram
commutes.



Closed Choice:
Cx CA(X) =X, X—X

C2 =sW LLPO

Compositional products:
fxg:=max{foogo| fo <w f,90 <w g}

Algebraic operations:
Product f x g, parallelization f, etc.



Weak Koénig's lemma

WKL Weak Kénig's lemma
Every infinite 0/1-tree, has an infinite branch.

DNCy Diagonal non-computable function
For every p € 2V, there exists a diagonal non-computable
function f: N — k, i.e., f(n) # ¢L(n).
PA Completion of Peano arithmetic
For every p there is a Turing-degree d containing a
completion of each p-computable theory.

Theorem (classical)

Computationally (non-uniform) the following are equivalent:
o WKL,
@ DNCy, for any k € N,

o PA.

DNCly is weaker.



WKL in the Weihrauch lattice

Theorem

WKL = LLPO

§

Definition (ACCyx, all or co-unique choice)
ACCx CA(X)= X, A A
and dom(ACCx):={A e A_(X): | X\ 4] <1and A #0}.

Theorem (Weihrauch, '92)
ACCy <w ACCn_H <w ACC,, <y ACCy =,y LLPO

A\

Theorem (Brattka, Hendtlass, K.)
DNCx = ACCx

A\

In particular, WKL =qy LLPO =, DNCo.



WKL in the Weihrauch lattice (cont.)

Theorem (Brattka, Hendtlass, K.)
ACC, %w DNC,+1

DNCy <w DNC,,4; <w DNC,, <ywwv DNCy = WKL



Turing degrees as represented spaces

Let [p] ;== {¢ e NV | p=1 ¢}

Definition (Turing degrees, representation)

o D:={[p]|peN"},
o ip: NN = D p s [p].

Observation
Turing degrees are invariant under finite modification of its members.

65 (d) for d € D, is dense.

We call such spaces densely realized.



Densely realized

A multi-valued map f:C X =Y is called densely realized, if
{F(p)| F+ f} isdenseforall pedom(fix).

Proposition

If'Y as above is densely realized, f is densely realized.

If f is densely realized, then

ACCx £w f. (1)

Proof: Continuity! D.J

Property (1) is called w-indiscriminative.

PA :C D = D is w-indiscriminative. Thus, DNCy £w PA.
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Other principles considered

o Weak weak Koénig's lemma and Martin-L6f randomness

@ Jump inversion theorem
JT:d—{a|d =dul},
T < ¢y x id

@ Kleene-Post theorem

Relates to (refines) other approaches:

Theorem (Relation to Medevdev reducibility)
For f,g:C NN = NN,

f<wg=
Vp € dom(f) N COMP Jq € dom(g) N COMP (f(p) <m g(q)).

Our analysis of DNCj, refines work by Cenzer, Hinmann in Medevdev
lattice.



Indiscriminative

Definition

f:€C X 2Y is called
o indiscriminative  if LLPO #£w f,
e w-indiscriminative if ACCy £w f.

Are indiscriminative principles useful?

No: Obviously do not compute much.
Probably, the reason why most of recursion theory does not
show up in analysis.
WKL is an exception.

Yes: | will present some examples.



Reasons for being indiscriminative

Computational weakness,

Continuity,

Densely realized,
o Range is densely realized as space

o Turing degrees D,
@ Derived spaces

o Definition of the principle

@ Weak Bolzano WeierstraB principle

WBWTg :C RN = R’

Cohesive principle, (variants of) Baire category theorem




Cohesive principle

Definition
o Let (R;)ien C 2. A set X € 2N is called cohesive if

e X is infinite.
o X C* R;or X C* R; for all 4.

o COH:C (2V)N = oN

Proposition
COH Js densely realized.

Proof: By definition. DJ

@ COH is w-indiscriminative.

o WKL £ COH,
o DNCy, MLR £y COH.




Cohesive principle and weak Bolzano-Weierstral3

Theorem (K. '11)

Note: non-strong Weihrauch equivalence. There is a variant of SBWTg
for which strong equivalence holds.

Proposition
BWTRr =.w lim * WBWTR =.w lim * COH

Theorem (Brattka, Gherardi, Marcone '12; K.)

BWTr =w WKL =qw WKL * lim




Cohesive principle and weak Bolzano-Weierstral3

lim *COH =w WKL’ =y BWTg
Is COH optimal? Is there a weaker principle such that

lim* | 7| =w WKL’
Yes, COH is optimal.

COH =y lim — WKL’ \

Side info on —, (Brattka, Pauly '14)

f—=g:=min{h | g <w fxh}.
@ f — g is the weakest oracle for f needed to compute g.

o Exists always.

Algebraic characterization of COH



Cohesive degrees

Degree variant of COH:
[COH]:CD =D

Jump for degrees:
Jp:dw—{d}

Theorem (Jockusch, Stephan '93 (essentially))
[COH] =y Jp' o PA o Jp.

Note:
COH £ lim ™! % WKL * lim

[COH] =w (lim — PA’) =y (Jp — PA')




Baire category theorem

Let X be a complete metric space.

Theorem (Baire category theorem)

Let (A;)ien be closed nowhere dense subsets of X .

JAacx

€N

Formulate as computational problem:
BCTy Given (A;);en closed nowhere dense. There is an
BCTo:CA (X)N= X

BCT; Given (A4;);en closed, such that (J;cyy A; = X. There is an
index 7 such that A; is somewhere dense.

BCT;:CA (X)N=N

BCT5,, BCT3 are defined like BCTy and BCT; but with positive input.



Baire Category theorem (cont.)

classical reverse
mathematics

BCTy | computable RCAq

computable with finitely many mind changes
Cn

computability theoretic version
related to 1-generic, forcing

BCT, RCAy + BCTII

BCT, IYG

BCT3 | equivalent to cluster point problem ACAq

Space X has to be perfect (no isolated points.) E.g., 2N, NN,
Non perfect space:

Proposition

BCTQ =sW ld{) BCT3 =sW ZdN

In particular BCT,, BCT3 are computable in this case.



Baire Category theorem

Theorem (Brattka, Hendtlass, K.)

BCT,; for a perfect polish space X is strong-Weihrauch equivalent
to BCT,; for NN,

Consider now only X = NV,

Theorem (Brattka '01, Brattka, Gherardi '11)

o Cy =.w BCTy,
4 CLN =sW BCT3 =sW BCTll

BCT,, BCTj3 are discriminative.

Theorem (Brattka, Hendtlass, K.)

o BCTy, BCTy are densely realized and hence w-indiscriminative.
(] BCT6 =sW BCT2




Proof of BCTy =,w BCT{, and BCT3 = BCT)

Representations:
negative information | A_,¢_ | Enumerate balls in complement
positive information | A4, ¢4 | Closure of points
cluster point A, ¢« | Cluster points of points

Proposition
?:d+_2 A+ (X) — A_ (X) <sw lim

Gives BCTy <qw BCT{, and BCT3 <,w BCT}.

Proposition (Brattka, Gherardi, Marcone '12)

id: A (X) — A_(X)" is a computable isomorphism.

Proposition

There is an M :C A.(X) = A, (X) such that,
e M(A)C{B: AC B}
o A nowhere dense = B € M(A) nowhere dense. (X perfect)




A point p € 2V is 1-generic relative to ¢ if it meets or avoids any c.e. open
set U/, i.e.,
JwCp (w?N CU! or w2V N Ul = (Z)) )

Equivalently: p ¢ oU/

BCTy <aw 1-GEN <qy BCT \

@ For nowhere dense 4, A = 0A = 0A°.

BCTo =2Y\ | 4 =, 2"\ 945)

Now A§ = U;’ for a suitable j. Thus, BCTy <¢w 1-GEN.
@ Use BCTy =qw BCT(, and compute (U) in the limit. O




1-generic (cont.)

Theorem
BCTy <sw 1-GEN < w BCT,
(The implications are strict.)

Proof sketch.

@ Sufficient to use a weakly 1-generic in the previous proof.
Apply the fact that there are weakly 1-generics that are not 1-generic.

@ (Uniform) Theorem of Kurtz shows that 1-GEN <qv WWKL'.?

Lemma of Kudera shows that WWKL’ can be realized such that its
output is low for 2.

There is a computable p such that BCTy(p) is not low for €.
Thus, BCTy £w WWKL'.

?Actually, (1 — *)-WWKL’




Definition (IIG, classical reverse math)

Let D; C 2<N be a sequence of dense, uniformly I1{-set. There is a set
G C 2N meeting each D;, ie., 3s € D; (s C G).

I19G related to forcing constructions.
Formulation in the Weihrauch lattice: Model properties of D; using a
suitable representation

Definition

¢p4(p) =D <= ¢_(p) =F and A= N \ UweEMZN,
where E C 2<N,

Definition (IT1YG, Weihrauch version)

H[l)G :C A#(?N)N = oN (Dz)z — ﬂzN \ D;,

with dom(H?G) = {(AZ)Z ’ A;) = (Z)}




I19G (cont.)

Proposition

id: A_(2Y) — A4 (2N) is a computable isomorphism.

T19G =, BCT)) = BCT, l




CLN =sW BCT/1 =sW BCTg (1 - *)—WWKL,
lim =.w J \
1 \
=w J !olim |
1
CR \ limJ \\
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What more do we see in the Weihrauch lattice?

@ Characterization of DNCy, as parallelization of weak omnisience
principle ACCy.

@ Algebraic characterization of COH =y, lim — WKL'.
e Calculus characterization of I1{G.



Thank you for your attention!
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