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@ Functions of bounded variation
o Representation

@ Helly's selection theorem



Functions of bounded variation

Definition

@ The variation of a function f: [0,1] — R is defined as follow.

n—1
V(f):= sup Y [f(t:) — f(tiyr)]

0<t1<-<tn<l ;3

where t1,...,t, ranges over the finite partitions of [0, 1].

e fis a function of bounded variation if V(f) < oc.

Y
@ Examples: A
e Characteristic functions of intervals
e Continuously differentiable functions.
\/ x

@ Non-example:

_ fsin(1/z) x>0,
fla) = {0 z=0.



Functions of bounded variation

Definition
@ The variation of a function f: [0,1] — R is defined as follow.

n—1
V(f):= sup Y [f(t:) — f(tiyr)]

0<t1<-<tn<l ;3

where t1,...,t, ranges over the finite partitions of [0, 1].

e fis a function of bounded variation if V(f) < oc.

Y
@ There is a correspondence between
linear functional on C'([0,1]) and
functions of bounded variation via the
\/ x

Riemann-Stieltjes.



Functions of bounded variation in computable analysis (so

far)

Let f be of bounded variation.

@ f has at most countably many points of discontinuity.

o fi(x):=limy », f(y) is left-continuous, of bounded variation and
f(z) = fi(z) on all points of continuity.

e f and f; induce the same linear functional on C([0, 1]).

@ Let x; be a dense set of points of continuity of f. Represent f by

<(331, f(l'l))v (1'2, f(.%'g)), - >

@ f can be recovered by left-continuous extension.

@ Successfully applied to give computable interpretation of Jordan
decomposition etc.  (Weihrauch et. al.)



Functions of bounded variation in computable analysis (so

far)

@ Left-continuous functions of bounded variation do not form a space.
o Not closed under taking limits.

@ Definition of bounded variation does not generalize to > 1 dimensions.



Sobolev spaces

. 1
® The Li-norm is given by || f||, = [y |f(z)|dz.
e The space L is represented as sequences of rational polynomials
(p1,...) converging at 2=™ in Ly-norm.
o The Whl-norm is given by || flly11 == £l ., + I1FllL,-
o The derivative f’ is taken in the sense of distributions.
o The space W1 is represented as sequences of rational polynomials
(p1,...) converging at 27" in Whl-norm.

e All f € W1 have bounded variation since

z+i

V(f)=  sup Z |f(ti) —

0<t1 < <tn<l ;4

— i+i
<apy [ dxz/o 1] dr < |y
i=1""

e Characteristic functions of intervals do not belong to W1
but have bounded variation.




The space BV

Want: A space BV with
Ly 2 BV 2 Wh!,

and variation-norm

I lpy = Ifllzy + V()

Problem

Such a space exists, but it is non-separable.

@ The family 1jp , with z € R is of the size of the continuum and
has mutual distance > 2.

Representation of non-separable spaces. (Brattka)
A point x is represented by

@ sequence converging to x (not necessarily at a given rate), and
@ norm v = ||z||, or a bounded v > ||z||.

We will use a hybrid approach.



The space BV

The function f € BV is represent by (v, pi1,p2,...) where
® (p1,p2,...) represent a function in L1,
e veQ@, and
o [[pll; <w.

We will call v the bounded of variation of f.

Clear: L; 2 BV D Wbl

(This implies V (p;) <w.)

M

Theorem

For each f: [0,1] — R of bounded variation the
L1-equivalence class of f is in BV .

Proof sketch

|

Approximated
a function of bounded variation f with

mollifications of f without increasing the
variation.




The space BV

The function f € BV is represent by (v, pi1,p2,...) where

® (p1,p2,...) represent a function in L1,

e veQ@, and

o |Ipill; <w. (This implies V(p;) < wv.)
We will call v the bounded of variation of f.

Clear: L; 2 BV D Wbl J

For each f: [0,1] — R of bounded variation the
L1-equivalence class of f is in BV .

For each f € BV the equivalence class contains a function of bounded
variation.




Helly's selection theorem

Theorem (Helly's selection theorem, HST)

Let (fn)n € BV be a sequence of functions with bounds for variations v,,.
If

Q ||fully Suforaueq,
Q v, <wforaveQ,
then there exists an f € BV and a subsequence f,,) such that

Sa(w) 2% £ in Ly and the variation of f is bounded by v.

How difficult is it to compute f7?




Proof of HST

. . better
mollifications —

O VANTAY
AN IS N

@ If each column of mollifications converges uniformly, then f;
converges in Li-norm.

@ Each column of mollifications is equicontinuous.
= parallelization of Ascoli-Lemma (AA).
@ This reduction holds also computationally.

o (Parallelization of) AA can be reduced to (a parallelization of) the
Bolzano-WeierstraB principle (BWT). (K. 12)

o (Parallelization of) the BWT can be reduced to a single use of BWT.



o HST =y BWTg.

@ Over RCA, HST Js instance-wise equivalent to the
Bolzano-WeierstraB principle.

Analysis of Bolzano-WeierstraB principle in the Weihrauch lattice (Brattka,
Gherardi, Marcone '12) and (K. '11) for instances of Bolzano-WeierstraB
gives the following full classification of HST.

@ HST =w WKL’
e Over RCA, HST is instance-wise equivalent to WKL for {-trees.




@ Representation of functions of bounded variation Sobolev-like space.

@ Analyzed Helly's selection theorem.

Thank you for your attention!
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