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Abstract Let 2-RAN be the statement that for each real X a real 2-random relative
to X exists. We apply program extraction techniques we developed in [10,9] to this
principle.

Let WKL{ be the finite type extension of WKLy. We obtain that one can ex-
tract primitive recursive realizers from proofs in WKL§ + H?-CP +2-RAN, i.e., if
WKLE + IT19-CP + 2-RAN | V£ 3xAy(f,x) then one can extract from the proof a
primitive recursive term 7( f) such that Aj(f,z(f)). As a consequence, we obtain that
WKLo -+ IT9-CP + 2-RAN is I13-conservative over RCA,.

Keywords weak weak Konig’s lemma - 2-random - program extraction - conserva-
tion - proof mining
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Introduction

Let n-RAN be the statement
VX 3Y (Y is n-random relative to X).

It is known that 1-RAN is equivalent to weak weak Konig’s lemma (WWKL). That is
the restriction of weak Konig’s Lemma to infinite binary trees 7', which additionally
satisfy
T | 1th
L s eT[lth(s)

—o0 2!

=il o, 0

see [13]. (The condition (1) should be read as JkVi HSET“;M >27% In particular,
we do not assume that the limit exists.)
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Avigad, Dean, and Rute showed that, relative to RCAq + H(I)-CP,1 the principle
2-RAN is equivalent to WWKL for trees computable in the first Turing jump (of the
parameters), see [1]. This principle is denoted by 2-WWKL. Recently, Conidis and
Slaman showed that 2-RAN is H%—conservative over RCA( + H?-CP, see [3].

In this paper we will prove a program extraction result along this lines which
additionally deals with WKL. In detail, we will show the following theorem:

Theorem 1 The system WKL +T19-CP + CAC +2-RAN is conservative over RCA?
for sentences of the for ¥ f 3xAy(f,x). Moreover, from a proof one can extract a
primitive recursive realizer t[f] for y.

The @ superscript at WKLy and RCAy indicates that we use the finite type variant
of these systems. This means they are not sorted into two types for N and subsets
of N, but into countable many types for N, NV, N etc. These systems can be in-
terpreted in their second-order counterpart. See [7]. Below we will also need the
finite type variants of the systems WKL and RCA(. These systems are defined to be
RCA( resp. WKLy where Z(l)—induction is replaced by the exponential function and
quantifier-free induction, see [11, X.4]. The finite type variants will be denote by
WKLE* and RCAY™.

Theorem 1 also deals with the chain antichain principle (CAC). This principle
states that each partial ordering contains an infinite chain or an infinite antichain.
In [2] Chong, Slaman, and Yang showed that CAC is H}—conservative over RCA( +
H?-CP. We established a program extraction for CAC in [9] which is extended by
Theorem 1.

Interpreting RCAS in RCA and noting that Hg statements are equivalent to state-
ments of the form V f xAy( f, x) over RCAY we obtain from Theorem 1 the following
corollary.

Corollary 1 WKL + H?-CP + CAC+2-RAN is conservative over RCAq for sen-
tences of the form VX A(X) where A is TI5.

This corollary should be compared with the mention conservation results for
CAC and 2-RAN. Both results are established using a similar model theoretic forcing
and thus can be combined. One obtains that CAC +2-RAN is IT}-conservative over
RCAy +H?-CP. We belief that one could treat WKL in a similar way. Corollary 1 as it
is stated follows from this together with the fact that H?-CP is Hg-conservative over
RCAy. Our proof of this statement presented in this paper has the following advan-
tages. It additionally yields a finitary method which translates a proof using 2-RAN
and CAC into a proof in RCAy. This is not the case for the proof based on model-
theoretic forcing. In addition to that our proof exhibits a finitary method to extract
primitive recursive programs as mentioned in Theorem 1.

The proof of Theorem 1 is based on the techniques we developed in [10,9]. There
we introduced the notion proofwise low. Roughly speaking, this notion covers the
computational content of low;-ness but also keeps track of the induction used in the
proof. A H%-principle P of the form

VX 3y P(X,Y) )

! In first order context H?-CP is usually denoted by BII; which is equivalent to BY,.
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is called proofwise low over a system, say WKL®™, if for each term ¢ a term & exists
such that

WKLY VX (TTI-CA(EX) — 3 (P'(X,Y) ATI)-CA(9XY))).

Here I19-CA(¢) := 3£ Vn (f(n) = 0 <> Vxt(n,x) = 0).

We showed that for principles P of the form (2) where P’ is H(l) and that are proof-
wise low relative to WKLE™, a program extraction result of the form of Theorem 1
holds, see [9, Corollary 3.4]. We will prove Theorem 1 by showing that 2-WWKL,
and hence 2-RAN, is (equivalent to) such a principle and these results are applicable.

Proof of Theorem 1

Let Z-WWKL be weak weak Konig’s Lemma where the tree is given by a formula of
the class #". Using this notation 2-WWKL is the same as A-WWKL. The following
lemma shows that we can restrict our attention to Z?—WWK L.

Lemma 1

(i) RCA; - TIO-WWKL <> WWKL
(ii) RCA) F II9-WWKL > £9-WWKL

Proof Let T = {s € 2V | Vk f(s,k) = 0} be a IT{-tree such that (1) holds. Then the
tree T’ := {s € 21| Vs’ C sk < Ith(s) f(s/,k) = 0} is recursive, has the same infinite
branches as 7', and satisfies (1) since 7' O T. Thus WWKL suffices to find an infinite
branch of T'.

Now let T = {s € 2 | Vk 3n £ (5,k,n) = 0} be a [13-tree such that again (1) holds.
Then T’ := {5 € 2V | Vs’ C sVk < Ith(s) 3n f(s',k,n) = 0} is a X0-tree and again has
the same infinite branches as T and satisfies (1). Therefore, Z?—WWKL yields an
infinite branch.

Proposition 1 For each term ¢ and each m there exists a closed term & such that
RCAQ* +T10-CA(&) proves that there exists a tree T with

T |1th(s) =i

i—poo 2

3)

and for each infinite branch b of T the statement H?-CA((Pb) is provable.

The proof of this proposition make use of the concept of an associate. An associate is
a representation of a continuous functional on NV, For a continuous functional F(g)
a function o satisfying the following statement is called an associate for F.

VfInogp(gn) #0, Vf.n(op(gn) #0—ar(gn) —1=F(g)),

where g denotes the course-of-value function for g. Note that the functional F is de-
termined by the values of a. The closed terms of the finite type systems we consider
here are provably continuous and have associates, see [12,7].



4 Alexander P. Kreuzer

Before we come to the proof we define the shorthand

oL [xN2]
i (X) = BT

With this, condition (1) can be rephrased as lim; o t£;(T) > 1 —27".

Proof (Proof of Proposition 1) Let o (s,n, k) be an associate of ¢ (b,n,k). Then we
have B
Vk ¢ (b,n,k) =0 <> Vk,K oy (b(K'),n,k) < 1.

For each n the full binary tree 2<I decomposes into the sets
Xy = {s €2V |Vkay(s,n,k) <1} and ¥, :={s €2 | 3kay(s,n,k) > 1}.

Each set X, is by the properties of an associate closed under prefix. Therefore, it forms
atree. The sets ¥, can be approximated with the sets ¥, ; := {s € 25| Ik <1 o (s,n,k) >
1} in the sense that ¥, = ey Yy and ¥, C Y, p for I < 1'.

Since o (s,n,k) > 1 implies ot (s * (x),n,k) > 1 for any x < 2 we have that
.ui(Yn) < .uj(Yn) and “i(YnJ) < “j(Yn,l) ifi < j. “4)

‘With this we obtain

. I @ . .
hm/.L,-(Yn) = lim lim ui(Y,,,l) < lli)nolol,l[(yn,[) < }L%M,(Yn)

i—o0 i—o0 [—yoo0

We conclude that all the expressions are equal and thus
Vi, k30> 1| wi(Y,) — (V)| <275 (5)

A choice function g(n,k) that outputs for each n,k such an I, exists by a suitable
instance of H?—AC, which follows from H?-CA(&) for a suitable choice of &, see [6],
[8, Chapter 13.4].

Let Yn% be the set of all branches going thought Y, ;, i.e.

Yn% ={se2V |3 ey, (YCsVvsCs)}
By definition we have
‘Ll,l(YnJ) = ‘Ll,,'(Yn%) foralli> 1.

Since the set Y, is finite and decidable, it is clear that Yn% is also decidable. The set
YE

" is obviously closed under prefix and therefore is a tree.

Consider X, U YE

e (k)" This set is a union of trees and, hence, a tree. Moreover

Hm s (X Y, g0) = lim g (Xo) + Jim g%, )
. C
= 1im 41 (Xa) + tgni) (V)

o ' . .
> lim p;(X,) + lim y;(Y,) —2¥=1-2
i—yoo

i—oo
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By definition of the sets X,, and Y,, we have that for each infinite branch b of the tree
X, UY c we have that
n,g(n.k)

Vko(b,n,k) =0 (6)
if and only if b is an infinite branch through X, which is only the case if b does not
go through Yngg(n‘k). Since this is decidable, we can decide (6). The tree X, U Yfg(mk)
is H(l) since X, is H(1)~

Now consider the tree T = (,,cn (X, U Ygg

). Since T is an intersection of
n,g(n,m+n+1)
trees, it is again a tree. One checks that

=)

lim p;(T) > 1- Y 27 > 1 -2,

i—roo
n=0

Let b be any infinite branch of 7. Since T is contained in X,, UY Eg(

n,g(n,m+n+1
n the property (6) is decidable and thus IT1)-CA(¢b) provable.
The tree T is H?. Using the construction described in the proof of Lemma 1 one
obtains a recursive tree which has the desired properties.

) for each

This proof is inspired by [5], [4, Theorem 8.14.1].

In order to show that Z?-WWKL can be written as a principle of the form (2) with
P e H(l) we first observe that the sequence under the limit in (1) is decreasing, if 7" is
a tree. Thus this limit is > O if and only if there exists an m such that each element of
the sequence is > 27", With this 2(1)-WWKL can be written in the following form

[{s €2"| 3k f(s,k)
2}’[

Vf,m (Tz? (f) AVn =0} >0 27" —3bVn3k f(b(n),k) = 0)

where b is a function, b is the course-of-value function of » and TZ? (f) denotes the

statement that f describes a binary Z(l)—tree, i.e.
Vs (akf(s,k) — 05V CsTkf(s,k) =0Ase 2<N) .

Let f'(s,k) := mingy<; f(s,k"). By taking a choice function for the first kX and a maxi-
mum we obtain the following, equivalent statement

[{se2"] f/(;,:g(n)) =0} >g2 "

vf.g.m (TZ? (f) A v
— 363k f(b(n), k) = 0) )

We define the following constructions: Let

. 0 ifse2NandVs Csf/(s,k)=0,
7.0 :={ (5:4)

1 otherwise,

f(s,k) if Y <1th(s) (57 [{s € 2" | f(5,8(n)) = 0} > 27"),
0 otherwise.

Som(s,k) = {



6 Alexander P. Kreuzer

These constructions can be defined in RCAY™ and it is easy to see that V/ f TZ? (f) and
VfTZ(l) (f)— f =1 f. Also by construction (provably in RCA§™)

e H € 2| (Plem(s.gln)) = o}] 2927

and (f)gm = £ if f,g,m satisfy Vn 5
Thus (7) is equivalent to

{s € 2" | f(s,g(n)) = OH >27™™

Vf,g,mElenEIk@(E(n),k) =0.

By an application of QF-AC®? this is equivalent to
Vf,g,m3b,hVn fou(b(n),h(n)) =0,
which is the desired form. We will call this principle E?—VWL(( fyg,m), (b, h).

Theorem 2 The principle E?-VWV?L is proofwise low over WKL®*, i.e. for all terms
O there exists an & such that

WKL -/, g,m (TI9-CA(E(f, g.m))
36, (Z-WWKL((f g m). (b,5)) A TI-CA(9(£,8,m,,1))) ).

Proof Fix f,g,m and assume that that f describes a Z?-tree
T ={s €2V |3k f(s,k) =0}

and satisfies premise of (7). Otherwise we could replace f by fg,m. We may also
assume that for each s there is at most one k such that f(s,k) = 0.
Let oty 4.m) be that associate of ¢ with respect to the parameters b, h. Then

Vk¢(f7g7mab7h7n7k) =0« Vkalak” a¢(f.g,m) (Z(k,)vﬁ(k”)ﬂ/l?k) =0
< VEVK' V" (Vi <1th(s") f(b(i), (s")i) = 0= Oty (f.g.m (b(K'),s",n,k) = 0)

Thus, we many disregard the parameter 4 and just prove I10-CA(¢'(f,g,m,b)) for a
given ¢’

By Proposition 1 there exists a term &; (f,g,m) a tree T’ such that II-CA (& (f, g,m))
proves that 7’ exists, for each infinite branch b of 7’ the statement I19-CA(¢'(f, g,m, b))
is provable, and lim; e, p;(T7) > 1 —2-0n+1),

Let &(f,g,m,n,k) := f(n,k). Then TIV-CA(&(f,g,m)) decides Tk f(s,k) =0
and thus relative to this statement 7 is recursive. By the properties of 7 we have that
lim; o0 [.l,‘(T) >27m,

Consider the tree T N 7" For this tree lim; o, it;(T NT") > 27"*1 Therefore, it is
infinite. By WKL it has an infinite branch b, and by definition IT1)-CA(¢'(f,g,m,b))
is provable.

Noting that TI9-CA(&; (f,g,m)) and T19-CA(&(f,g,m)) can be coded into one
instance & (f,g,m) of H?-CA, see [6, Remark 3.8.2], proves the theorem.
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Proof (Proof of Theorem 1) The theorem without CAC follows from Corollary 3.4 of

[9], Theorem 2, and the fact that E?-WL and 2-RAN are equivalent over WKL(‘)" +
19-CP.

The full statement of Theorem 1 follows from the fact that CAC is proof-wise low

over a suitable system, see also [9], and one can code two proofwise low principle
into one.
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