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Abstract Let 2-RAN be the statement that for each real X a real 2-random relative
to X exists. We apply program extraction techniques we developed in [10,9] to this
principle.

Let WKLω
0 be the finite type extension of WKL0. We obtain that one can ex-

tract primitive recursive realizers from proofs in WKLω
0 +Π0

1-CP+ 2-RAN, i.e., if
WKLω

0 + Π0
1-CP+ 2-RAN ` ∀ f ∃xAqf( f ,x) then one can extract from the proof a

primitive recursive term t( f ) such that Aqf( f , t( f )). As a consequence, we obtain that
WKL0 +Π0

1-CP+2-RAN is Π0
3-conservative over RCA0.

Keywords weak weak König’s lemma · 2-random · program extraction · conserva-
tion · proof mining
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Introduction

Let n-RAN be the statement

∀X ∃Y (Y is n-random relative to X) .

It is known that 1-RAN is equivalent to weak weak König’s lemma (WWKL). That is
the restriction of weak König’s Lemma to infinite binary trees T , which additionally
satisfy

lim
i→∞

|{s ∈ T | lth(s) = i}|
2i > 0, (1)

see [13]. (The condition (1) should be read as ∃k∀i |{s∈T |lth(s)=i}|
2i ≥ 2−k. In particular,

we do not assume that the limit exists.)
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Avigad, Dean, and Rute showed that, relative to RCA0 +Π0
1-CP,1 the principle

2-RAN is equivalent to WWKL for trees computable in the first Turing jump (of the
parameters), see [1]. This principle is denoted by 2-WWKL. Recently, Conidis and
Slaman showed that 2-RAN is Π1

1-conservative over RCA0 +Π0
1-CP, see [3].

In this paper we will prove a program extraction result along this lines which
additionally deals with WKL. In detail, we will show the following theorem:

Theorem 1 The system WKLω
0 +Π0

1-CP+CAC+2-RAN is conservative over RCAω
0

for sentences of the for ∀ f ∃xAqf( f ,x). Moreover, from a proof one can extract a
primitive recursive realizer t[ f ] for y.

The ω superscript at WKL0 and RCA0 indicates that we use the finite type variant
of these systems. This means they are not sorted into two types for N and subsets
of N, but into countable many types for N, NN, NNN

etc. These systems can be in-
terpreted in their second-order counterpart. See [7]. Below we will also need the
finite type variants of the systems WKL∗0 and RCA∗0. These systems are defined to be
RCA0 resp. WKL0 where Σ0

1-induction is replaced by the exponential function and
quantifier-free induction, see [11, X.4]. The finite type variants will be denote by
WKLω

0
∗ and RCAω

0
∗.

Theorem 1 also deals with the chain antichain principle (CAC). This principle
states that each partial ordering contains an infinite chain or an infinite antichain.
In [2] Chong, Slaman, and Yang showed that CAC is Π1

1-conservative over RCA0 +
Π0

1-CP. We established a program extraction for CAC in [9] which is extended by
Theorem 1.

Interpreting RCAω
0 in RCA0 and noting that Π0

3 statements are equivalent to state-
ments of the form ∀ f ∃xAqf( f ,x) over RCAω

0 we obtain from Theorem 1 the following
corollary.

Corollary 1 WKL0 +Π0
1-CP+CAC+ 2-RAN is conservative over RCA0 for sen-

tences of the form ∀X A(X) where A is Π0
3.

This corollary should be compared with the mention conservation results for
CAC and 2-RAN. Both results are established using a similar model theoretic forcing
and thus can be combined. One obtains that CAC+ 2-RAN is Π1

1-conservative over
RCA0+Π0

1-CP. We belief that one could treat WKL in a similar way. Corollary 1 as it
is stated follows from this together with the fact that Π0

1-CP is Π0
3-conservative over

RCA0. Our proof of this statement presented in this paper has the following advan-
tages. It additionally yields a finitary method which translates a proof using 2-RAN
and CAC into a proof in RCA0. This is not the case for the proof based on model-
theoretic forcing. In addition to that our proof exhibits a finitary method to extract
primitive recursive programs as mentioned in Theorem 1.

The proof of Theorem 1 is based on the techniques we developed in [10,9]. There
we introduced the notion proofwise low. Roughly speaking, this notion covers the
computational content of low2-ness but also keeps track of the induction used in the
proof. A Π1

2-principle P of the form

∀X ∃Y P′(X ,Y ) (2)

1 In first order context Π0
1-CP is usually denoted by BΠ1 which is equivalent to BΣ2.
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is called proofwise low over a system, say WKLω
0
∗, if for each term φ a term ξ exists

such that

WKLω
0
∗ ` ∀X

(
Π

0
1-CA(ξ X)→∃Y

(
P′(X ,Y ) ∧Π

0
1-CA(φXY )

))
.

Here Π0
1-CA(t) :≡ ∃ f ∀n ( f (n) = 0↔∀xt(n,x) = 0).

We showed that for principles P of the form (2) where P′ is Π0
1 and that are proof-

wise low relative to WKLω
0
∗, a program extraction result of the form of Theorem 1

holds, see [9, Corollary 3.4]. We will prove Theorem 1 by showing that 2-WWKL,
and hence 2-RAN, is (equivalent to) such a principle and these results are applicable.

Proof of Theorem 1

Let K -WWKL be weak weak König’s Lemma where the tree is given by a formula of
the class K . Using this notation 2-WWKL is the same as ∆0

2-WWKL. The following
lemma shows that we can restrict our attention to Σ0

1-WWKL.

Lemma 1

(i) RCA∗0 `Π0
1-WWKL↔WWKL

(ii) RCA∗0 `Π0
2-WWKL↔ Σ0

1-WWKL

Proof Let T = {s ∈ 2N | ∀k f (s,k) = 0} be a Π0
1-tree such that (1) holds. Then the

tree T ′ := {s ∈ 2N | ∀s′ v s∀k ≤ lth(s) f (s′,k) = 0} is recursive, has the same infinite
branches as T , and satisfies (1) since T ′ ⊇ T . Thus WWKL suffices to find an infinite
branch of T .

Now let T = {s ∈ 2N | ∀k∃n f (s,k,n) = 0} be a Π0
2-tree such that again (1) holds.

Then T ′ := {s ∈ 2N | ∀s′ v s∀k ≤ lth(s)∃n f (s′,k,n) = 0} is a Σ0
1-tree and again has

the same infinite branches as T and satisfies (1). Therefore, Σ0
1-WWKL yields an

infinite branch.

Proposition 1 For each term φ and each m there exists a closed term ξ such that
RCAω

0
∗+Π0

1-CA(ξ ) proves that there exists a tree T with

lim
i→∞

|{s ∈ T | lth(s) = i}|
2i ≥ 1−2−m (3)

and for each infinite branch b of T the statement Π0
1-CA(φb) is provable.

The proof of this proposition make use of the concept of an associate. An associate is
a representation of a continuous functional on NN. For a continuous functional F(g)
a function αF satisfying the following statement is called an associate for F .

∀ f ∃nαF(gn) 6= 0, ∀ f ,n (αF(gn) 6= 0→αF(gn)−1 = F(g)) ,

where g denotes the course-of-value function for g. Note that the functional F is de-
termined by the values of αF . The closed terms of the finite type systems we consider
here are provably continuous and have associates, see [12,7].
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Before we come to the proof we define the shorthand

µi(X) :=

∣∣X ∩2i
∣∣

2i .

With this, condition (1) can be rephrased as limi→∞ µi(T )≥ 1−2−m.

Proof (Proof of Proposition 1) Let αφ (s,n,k) be an associate of φ(b,n,k). Then we
have

∀k φ(b,n,k) = 0↔∀k,k′αφ (b(k′),n,k)≤ 1.

For each n the full binary tree 2<N decomposes into the sets

Xn := {s ∈ 2<N | ∀k αφ (s,n,k)≤ 1} and Yn := {s ∈ 2<N | ∃k αφ (s,n,k)> 1}.

Each set Xn is by the properties of an associate closed under prefix. Therefore, it forms
a tree. The sets Yn can be approximated with the sets Yn,l := {s∈ 2≤l | ∃k < l αφ (s,n,k)>
1} in the sense that Yn =

⋃
l∈NYn,l and Yn,l ⊆ Yn,l′ for l < l′.

Since αφ (s,n,k)> 1 implies αφ (s∗ 〈x〉,n,k)> 1 for any x < 2 we have that

µi(Yn)≤ µ j(Yn) and µi(Yn,l)≤ µ j(Yn,l) if i < j. (4)

With this we obtain

lim
i→∞

µi(Yn) = lim
i→∞

lim
l→∞

µi(Yn,l)
(4)
≤ lim

l→∞
µl(Yn,l)≤ lim

i→∞
µi(Yn).

We conclude that all the expressions are equal and thus

∀n,k∃l∀i > l
∣∣µi(Yn)−µl(Yn,l)

∣∣< 2−k. (5)

A choice function g(n,k) that outputs for each n,k such an l, exists by a suitable
instance of Π0

1-AC, which follows from Π0
1-CA(ξ ) for a suitable choice of ξ , see [6],

[8, Chapter 13.4].
Let Yvn,l be the set of all branches going thought Yn,l , i.e.

Yvn,l := {s ∈ 2N | ∃s′ ∈ Yn,l
(
s′ v s ∨ sv s′

)
}.

By definition we have

µl(Yn,l) = µi(Yvn,l) for all i≥ l.

Since the set Yn,l is finite and decidable, it is clear that Yvn,l is also decidable. The set
Yvn,l is obviously closed under prefix and therefore is a tree.

Consider Xn∪Yvn,g(n,k). This set is a union of trees and, hence, a tree. Moreover

lim
i→∞

µi(Xn∪Yvn,g(n,k)) = lim
i→∞

µi(Xn)+ lim
i→∞

µi(Yvn,g(n,k))

= lim
i→∞

µi(Xn)+µg(n,k)(Y
v
n,g(n,k))

(5)
≥ lim

i→∞
µi(Xn)+ lim

i→∞
µi(Yn)−2k = 1−2k
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By definition of the sets Xn and Yn we have that for each infinite branch b of the tree
Xn∪Yvn,g(n,k) we have that

∀k φ(b,n,k) = 0 (6)

if and only if b is an infinite branch through Xn which is only the case if b does not
go through Yvn,g(n,k). Since this is decidable, we can decide (6). The tree Xn∪Yvn,g(n,k)
is Π0

1 since Xn is Π0
1.

Now consider the tree T =
⋂

n∈N(Xn∪Yvn,g(n,m+n+1)). Since T is an intersection of
trees, it is again a tree. One checks that

lim
i→∞

µi(T )≥ 1−
∞

∑
n=0

2m+n+1 ≥ 1−2m.

Let b be any infinite branch of T . Since T is contained in Xn∪Yvn,g(n,m+n+1) for each

n the property (6) is decidable and thus Π0
1-CA(φb) provable.

The tree T is Π0
1. Using the construction described in the proof of Lemma 1 one

obtains a recursive tree which has the desired properties.

This proof is inspired by [5], [4, Theorem 8.14.1].

In order to show that Σ0
1-WWKL can be written as a principle of the form (2) with

P′ ∈Π0
1 we first observe that the sequence under the limit in (1) is decreasing, if T is

a tree. Thus this limit is > 0 if and only if there exists an m such that each element of
the sequence is ≥ 2−m. With this Σ0

1-WWKL can be written in the following form

∀ f ,m
(
T

Σ0
1
( f ) ∧ ∀n |{s ∈ 2n | ∃k f (s,k) = 0}|

2n ≥Q 2−m→∃b∀n∃k f (b(n),k) = 0
)

where b is a function, b is the course-of-value function of b and T
Σ0

1
( f ) denotes the

statement that f describes a binary Σ0
1-tree, i.e.

∀s
(
∃k f (s,k) = 0→∀s′ v s∃k f (s,k) = 0 ∧ s ∈ 2<N

)
.

Let f ′(s,k) := mink′≤k f (s,k′). By taking a choice function for the first k and a maxi-
mum we obtain the following, equivalent statement

∀ f ,g,m
(
T

Σ0
1
( f ) ∧ ∀n |{s ∈ 2n | f ′(s,g(n)) = 0}|

2n ≥Q 2−m

→∃b∀n∃k f (b(n),k) = 0
)

(7)

We define the following constructions: Let

f̂ (s,k) :=

{
0 if s ∈ 2<N and ∀s′ v s f ′(s′,k) = 0,
1 otherwise,

fg,m(s,k) :=

{
f (s,k) if ∀n≤ lth(s)

( 1
2n |{s ∈ 2n | f ′(s,g(n)) = 0}| ≥Q 2−m

)
,

0 otherwise.
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These constructions can be defined in RCAω
0
∗ and it is easy to see that ∀ f T

Σ0
1
( f̂ ) and

∀ f T
Σ0

1
( f )→ f =1 f̂ . Also by construction (provably in RCAω

0
∗)

∀ f ,g∀m,n
(

1
2n

∣∣∣∣{s ∈ 2n | (̂ f̂ )g,m(s,g(n)) = 0
}∣∣∣∣≥Q 2−m

)
and ( f̂ )g,m = f̂ if f ,g,m satisfy ∀n 1

2n

∣∣{s ∈ 2n | f̂ (s,g(n)) = 0
}∣∣≥Q 2−m.

Thus (7) is equivalent to

∀ f ,g,m∃b∀n∃k̂̂fg,m(b(n),k) = 0.

By an application of QF-AC0,0 this is equivalent to

∀ f ,g,m∃b,h∀n̂̂fg,m(b(n),h(n)) = 0,

which is the desired form. We will call this principle Σ0
1-ŴWKL(〈 f ,g,m〉,〈b,h〉).

Theorem 2 The principle Σ0
1-ŴWKL is proofwise low over WKLω

0
∗, i.e. for all terms

φ there exists an ξ such that

WKLω
0
∗ ` ∀ f ,g,m

(
Π

0
1-CA(ξ ( f ,g,m))

→∃b,h
(

Σ
0
1-ŴWKL(〈 f ,g,m〉,〈b,h〉) ∧Π

0
1-CA(φ( f ,g,m,b,h))

))
.

Proof Fix f ,g,m and assume that that f describes a Σ0
1-tree

T = {s ∈ 2N | ∃k f (s,k) = 0}

and satisfies premise of (7). Otherwise we could replace f by ̂̂fg,m. We may also
assume that for each s there is at most one k such that f (s,k) = 0.

Let αφ( f ,g,m) be that associate of φ with respect to the parameters b,h. Then

∀k φ( f ,g,m,b,h,n,k) = 0↔∀k∀k′,k′′αφ( f ,g,m)(b(k
′),h(k′′),n,k) = 0

↔∀k∀k′∀s′′
(
∀i < lth(s′′) f (b(i),(s′′)i) = 0→αφ( f ,g,m)(b(k

′),s′′,n,k) = 0
)

Thus, we many disregard the parameter h and just prove Π0
1-CA(φ ′( f ,g,m,b)) for a

given φ ′.
By Proposition 1 there exists a term ξ1( f ,g,m) a tree T ′ such that Π0

1-CA(ξ1( f ,g,m))
proves that T ′ exists, for each infinite branch b of T ′ the statement Π0

1-CA(φ ′( f ,g,m,b))
is provable, and limi→∞ µi(T ′)≥ 1−2−(m+1).

Let ξ2( f ,g,m,n,k) := f (n,k). Then Π0
1-CA(ξ2( f ,g,m)) decides ∃k f (s,k) = 0

and thus relative to this statement T is recursive. By the properties of T we have that
limi→∞ µi(T )≥ 2−m.

Consider the tree T ∩T ′. For this tree limi→∞ µi(T ∩T ′)≥ 2−m+1. Therefore, it is
infinite. By WKL it has an infinite branch b, and by definition Π0

1-CA(φ ′( f ,g,m,b))
is provable.

Noting that Π0
1-CA(ξ1( f ,g,m)) and Π0

1-CA(ξ2( f ,g,m)) can be coded into one
instance ξ ( f ,g,m) of Π0

1-CA, see [6, Remark 3.8.2], proves the theorem.
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Proof (Proof of Theorem 1) The theorem without CAC follows from Corollary 3.4 of
[9], Theorem 2, and the fact that Σ0

1-ŴWKL and 2-RAN are equivalent over WKLω
0 +

Π0
1-CP.

The full statement of Theorem 1 follows from the fact that CAC is proof-wise low
over a suitable system, see also [9], and one can code two proofwise low principle
into one.
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